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Abstract 
 

Collinear Earth-Moon libration points have emerged as locations with immediate 

applications. These libration point orbits are inherently unstable and must be 

controlled at a rapid frequency which constrains operations and maneuver locations. 

Stationkeeping is challenging due to short time scales of divergence, effects of large 

orbital eccentricity of the secondary body, and third-body perturbations.  Using the 

Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's 

Interaction with the Sun (ARTEMIS) mission orbit as our platform (hypothesis), we 

contrast and compare promising stationkeeping strategies including Optimal 

Continuation and Mode Analysis that achieved consistent and reasonable operational 

stationkeeping costs. Background on the fundamental structure and the dynamical 

models to achieve these demonstrated results are discussed along with their 

mathematical development. 

 

INTRODUCTION 

 

Earth-Moon collinear libration points have emerged as locations with immediate applications. To fully 

understand the selection of Earth-Moon (EM) libration orbit orientations and amplitudes as well as the inherent 

problems of stationkeeping, this paper  offers the following: the originating theory of EM libration orbit 

evolution, the use of Poincaré maps to define and select orbit characteristics, the required modeling of the 

libration point orbits, the computation of the stability of the Earth-Moon orbits, and includes the in-flight 

stationkeeping strategies, observations, and experiences. Operational considerations are also included. Using the 

Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun 

(ARTEMIS) mission as our platform (hypothesis), we contrast and compare operationally demonstrated and 

validated strategies:  (i) the Optimal Continuation Strategy (OCS) which employs various numerical methods to 

determine maneuver locations while minimizing costs, and (ii) an implementation of Floquet modes and 

manifold information calculated from navigation states. Both these approaches develop optimal maneuver 

locations and delta-V (v) directions.  These orbits are inherently unstable and must be controlled at a rapid 

frequency that constrains operations and maneuver locations. Stationkeeping of these orbits is challenging 

because of short time scales of divergence, the effects of large orbital eccentricity of the secondary, and solar 

gravitational and radiation pressure perturbations.  To this end, the stationkeeping strategies presented minimize 

fuel while operationally providing for quality navigation tracking and maneuver planning scenarios.  Results 

using operational data are demonstrated in Poincaré maps and in the implementation of these stationkeeping 

strategies. 

 

CONSIDERATIONS OF THE EARTH-MOON SYSTEM 

 

With any model difference in energy from truth, a spacecraft will depart from the desired EM L1 or 

EM L2 orbit along an unstable manifold, either towards the Moon or in an escape direction. These escape 

directions can be towards the Earth or towards Sun-Earth regions (transferring onto the stable manifold in the 
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Sun-Earth system). The v required to affect these changes is exceedingly small, where even a mis-modeling of 

accelerations from solar radiation pressure or a natural perturbation will result in these escape trajectories. 

Therefore, the Earth-Moon system must be modeled as a true four-body problem, including the Sun‟s gravity as 

an important third-body acceleration. Along with the lunar eccentricity and solar radiation pressure 

accelerations, there are also operational aspects of any mission based on the spacecraft design flight constraints. 

Stationkeeping then becomes a task in high fidelity modeling for accurate trajectory predictions along with 

maneuver implementation that also matches environmental conditions. 

To determine the orbit stability (instability), one can perform a Mode Analysis using the eigenstructure 

(eigenvectors and eigenvalues) of the libration point orbit. By computing the 6 eigenvalues, λi, of the navigation 

State Transition Matrix (STM) one can determine | λi | < 1 → stable eigenvalue(s) or | λi | > 1 → unstable 

eigenvalue(s). Once the mode information is generated, one can predict the stability of the orbit and compare 

the planned maneuver directions with stable/unstable eigenvector information. Our operational results indicate 

that consistent and reasonable stationkeeping costs can be achieved with accurate models and maneuver 

strategies with the selection dependent upon spacecraft and operational limitations and constraints. To continue 

the orbit downstream and maintain the path in the vicinity of the libration point, one can selectively choose 

target goals around the libration orbit. For the method applied directly to ARTEMIS, these goals were directly 

related to the energy (velocity) at the x-z plane crossing to wrap the orbit in the proper direction, tentatively 

inward (unstable manifold) towards the libration point.  A  Poincaré map of Earth-Moon orbits is presented to 

demonstrate the structure of these orbits with respect to theoretical and operational motion. Cost comparisons in 

terms of executed maneuvers are presented between the different approaches. With unique operational 

constraints, accomplishment of the maintenance goals with the minimum cost in terms of propellant is usually 

the highest priority.  

ARTEMIS Background 

 

For the discussion of the applications in this paper, one should understand the fundamentals of the 

ARTEMIS mission which we use as our basis of investigation. ARTEMIS is the first mission flown to and 

continuously maintained in orbit about both collinear Earth-Moon libration points, EM L1 and EM L2. 
1-5

 The 

ARTEMIS mission transferred two of five Time History of Events and Macroscale Interactions during 

Substorms (THEMIS) spacecraft from their outer-most elliptical Earth orbits and, with lunar gravity assists, re-

directed them to both EM L1 and EM L2 via transfer trajectories that exploit the Sun-Earth multi-body 

dynamical environment. Two identical ARTEMIS spacecraft, named P1 and P2, entered Earth-Moon libration 

point orbits in 2010 on August 25
th

 and October 22
nd

, respectively. Once the Earth-Moon libration point orbits 

were achieved, they were maintained for eleven months, with the P1 spacecraft orbiting EM L2 and P2 orbiting 

EM L1. During this stationkeeping phase, the P1 spacecraft was transferred from EM L2 to EM L1. From these 

EM libration orbits, both spacecraft were inserted into elliptical lunar orbits in 2011on June 27
th

 and July 17
th

, 

respectively. 

 

The ARTEMIS libration orbits of the P1 spacecraft around the EM L2 / L1 and the P2 spacecraft around 

EM L1 appear in Figures 1 and 2, respectively. There were no size or orientation requirements on these orbits 

other than to minimize the insertion and orbital maintenance requirements and to permit a transfer into a lunar 

orbit with low inclination. Both ARTEMIS spacecraft had limited combined deterministic and statistical 

stationkeepingv budgets of ~15 m/s and ~12 m/s for P1 and P2, respectively. This v budget included the 

libration point orbit stationkeeping, the transfers between libration orbits, and the transfer into lunar orbit. The 

P1 and P2 L1 y-amplitudes were approximately 60,000 km with the P1 L2 y-amplitude near 68,000 km. The 

overall amplitudes are determined from the use of a ballistic Sun-Earth to Earth-Moon transfer insertion. 

Consequently, at the end of the multi-body transfer, the final lunar libration point orbit was influenced heavily 

by the Moon since the transfer orbit passes relatively close to the Moon at each negative x-z plane crossing with 

respect to the L2 libration point. The libration orbit dimensions appear in Table 1.  
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Table 1. ARTEMIS Libration Orbit Dimensions 

 

 ARTEMIS P1 @ L1 ARTEMIS P1 @ L2 ARTEMIS P2 @ L1 

Maximum x-Amplitude (km) 23656 32686 30742 

Maximum y-Amplitude (km) 58816 63520 67710 

Maximum z-Amplitude (km) 2387  35198 4680  

Minimum z-Amplitude (km) 181 n/a 246 

Period  (days),  average of 10 subsequent x-

z plane axis crossings  

13.51 15.47 14.19 

 

 
Figure 1.  ARTEMIS P1 Libration Orbit 

 

 
Figure 2.  ARTEMIS P2 Libration Orbit 

 



4 

 

THEORETICAL OVERVIEW AND ORBIT GENERATION 

 

While the final design for the ARTEMIS mission required high fidelity modeling, analysis of the 

libration orbits from the perspective of the Circular Restricted Three-Body (CR3B) problem yields much insight 

into the governing dynamics. In the CR3B model,
6
 the motion of a spacecraft, assumed massless, is governed 

by two massive primary bodies, the Earth and the Moon, each represented as a point mass. The orbits of the 

primary bodies are assumed circular relative to the system barycenter. A barycentered rotating frame is defined 

such that the rotating x̂ -axis is directed from the Earth to the Moon, the -axis is parallel to the direction of the 

angular velocity of the primary system, and the -axis completes the dextral orthonormal triad. Defining the 

mass parameter, 1

1 2

m

m m
 


, the non-dimensional distances to the primaries are  1

, 0, 0
T

r   and 

 2 1 ,0,0
T

r   . The position vectors defined in terms of rotating coordinates are written as  , ,
T

r x y z , 

 13
, ,

T

r x y z  , and  23
1 , ,

T

r x y z   . The first-order, non-dimensional, vector equation of motion 

is  

 x f x   where                                                                     (1) 

 , , , 2 , 2 ,
T

x x zf x y z y U x U U                                                   (2) 

The pseudo-potential,U , is defined    2 2

13 23

1 1
, ,

2
U x y z x y

r r

 
    , and quantities , ,x y zU U U  

represent partial derivatives of U  with respect to rotating position coordinates. The single, scalar integral of the 

motion, known as the Jacobi constant, C, is represented as   2
2 , ,C U x y z v  , where  

1/2
2 2 2

v x y z   .  

 

Five equilibrium points exist, including three collinear libration points, L1, L2, and L3, that lie along 

the -axis, and two equilateral points L4 and L5. Linear analysis of the collinear points 
6-9

 reveals that they 

possess a topological structure of the type saddle×center×center, thus, asymptotic flow to and away from the 

libration points is possible via the stable and unstable manifolds, respectively; periodic and quasi-periodic 

libration orbits exist within the center manifold. Selecting states such that they exist within the center manifold 

yields the following variational equations, centered at the libration point, describing libration orbits: 

           cos , cos , cos
x y z

x t A vt y t A vt z t A t             where ,iv i  represent the 

eigenvalues associated with the planar and out-of-plane center manifolds, respectively, angles ,   represent 

phase angles, and amplitudes ,
x y

A A  are related by a proportionality constant. Because v  , these equations 

describe quasi-periodic motion in the vicinity of the collinear points. Selecting 0
z

A   yields the planar, 

periodic Lyapunov orbits, while, choosing 0
x y

A A  , the periodic vertical orbits emerge.  

 

An example of a quasi-periodic orbit appears in black in Figure 3a; note that the orbit is linearized 

about the L1 point, but is plotted in a Moon-centered view. The z  evolution appears in Figure 3b, and 

illustrates the constant amplitude, 
z

A . By adjusting the phase angles ,  , it is possible to enter the libration 

orbit in different locations. As an example, the red segments in Figures 3a-3b represent shifts in angles   and 

  that allow for entry into the orbit at a different z  location. The variational equations exist within the 

framework of a linear analysis, however periodic and quasi-periodic orbits also exist in the full non-linear 

model, described by equations (1-2).
10

 Several methods exist for computing periodic and quasi-periodic 

libration orbits with the inclusion of non-linear effects.
11-15

 A quasi-periodic orbit in the CR3B problem is 

depicted in Figure 4a; the corresponding z-amplitude evolution appears in Figure 4b. Clearly, the 
z

A  amplitude 
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is no longer constant, but cycles between high and low z-amplitude modes. By shifting the entry phasing, it is 

possible to enter the quasi-periodic orbit at a different location and alter the z-amplitude mode. The red 

highlighted regions of Figure 4 demonstrate how the entry location in the orbit can be shifted to enter the orbit 

during the nearly planar mode. 

 

 

 

 
  

a) Quasi-periodic orbit in linear 

model, Moon-centered view 

 

b) z -amplitude evolution over time 

Figure 3. Quasi-Periodic Orbit in the Linear Model, with corresponding z -Amplitude Evolution. 

 

 

 

 

 

 
  

a) Quasi-periodic orbit in CR3B 

model, Moon centered view 

 

b) z-amplitude evolution over time 

Figure 4. Quasi-Periodic Orbit in the CR3B Model Cycles through High and Low z-Amplitude Modes. 

 

Poincaré Maps 

 
To obtain a more complete picture of the available libration point orbit solutions, it is useful to employ 

Poincaré maps. Through the use of a Poincaré map, an n-dimensional continuous-time system is reduced to a 

discrete-time system of (n-1)-dimensions. By additionally constraining the Jacobi constant, C , the problem is 

reduced to (n-2)-dimensions, and the map is represented in 4-D. To generate a Poincaré map, a surface-of-

section, Σ, is defined such that Σ is transversal to the flow, e.g.,  : 0x z    represents the surface-of-

section corresponding to crossings of the x-y plane. For the CR3B problem, trajectories are integrated using 
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equations (1-2), and crossings of Σ are displayed on the map. Consider the map in Figure 6, reproduced to 

resemble maps demonstrated by Gómez et al.,
16

 as well as Kolemen et al.
14

 

 

 

 
  

a) Poincaré map corresponding to 

crossings of the x-y plane, with 

sample orbits featured. 

 

b) z-amplitude evolution of selected orbits 

Figure 5. Poincaré Map Depicting Periodic and Quasi-Periodic Libration Point Orbit Structures in the 

Vicinity of L1 in the Earth-Moon System for C = 3.080. 

 

For the selected value of C, several periodic orbits exist, including a planar Lyapunov orbit (green), a 

vertical orbit (dark blue), and the northern and southern halo orbits. The halo orbits share the same crossings of 

the map, and the northern halo is featured in magenta in Figure 5a. Surrounding the vertical orbits are quasi-

periodic orbits, often denoted Lissajous orbits, which exist within the center subspace of the vertical. A sample 

Lissajous is featured in cyan. Similarly, the quasi-halo orbits lie in the center manifold of the central halo orbit. 

Examples of small and large northern quasi-halo orbits appear in red and orange, respectively. These distinct 

regions of quasi-periodic behavior are explored in detail by Barden and Howell.
17

 The z-amplitude evolutions 

corresponding to the large quasi-halo and Lissajous orbits featured in Figure 5a appear in Figure 5b. The 

periodic halo and vertical orbits possess constant 
z

A  amplitudes, whereas the quasi-periodic orbits exhibit 

oscillating values of
z

A . The crossings of the Lissajous orbits are contained within the central region of the map; 

therefore, these orbits do not possess the nearly planar modes demonstrated in Figure 4. The quasi-halo orbit 

crossings occur in the upper and lower regions of the map, and, thus, both high and low z-amplitude modes are 

facilitated by selection of a quasi-halo orbit. 

 

ARTEMIS Poincaré Maps 

 
 To gain insight into the types of orbits employed in ARTEMIS, Poincaré maps are generated to display 

the orbit structures associated with each libration point orbit energy level. Both L1 and L2 quasi-periodic 

libration orbits were incorporated in the ARTEMIS mission. In the original mission design, the P1 spacecraft 

spends an interval of ~131 days in orbit about the L2 point, followed by a transfer to an orbit about L1 for ~85 

days. The P2 spacecraft remains in orbit about L1 for approximately 154 days. The ARTEMIS trajectories are 

designed with higher-fidelity ephemeris modeling, and the true paths possess discontinuities in the form of 

small ∆vs. Thus, to analyze the libration orbits using maps, it is desirable to compute orbits qualitatively similar 

to those of the ARTEMIS mission in the CR3B model. To transition to the CR3B problem, the ARTEMIS 
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libration orbits are sampled by distributing nodes along the orbit paths, and are then re-converged in the CR3B 

model using a differential corrections process to ensure full-state continuity. For each of the converged 

trajectories, the Jacobi value, C, is evaluated and maps are generated that correspond to the appropriate libration 

point and the specified energy level. Because the ARTEMIS orbits and the converged CR3B libration orbits 

appear qualitatively the same, the results from the discussion of the CR3B orbits apply to the actual ARTEMIS 

orbits as well. Maps for the P1 L2, P1 L1, and P2 L1 libration orbits appear in Figures 6-8, respectively. 

 

 

 

 
  

a) Map corresponding to P1 L2 orbit  

 

b) P1 L2 orbit (red) with a southern quasi-

halo of similar size (purple) 
Figure 6. Poincaré Map associated with the P1 L2 ARTEMIS Orbit (C = 3.105) 

 

Each of the three ARTEMIS libration orbits possesses crossings (in red) of the map that lie in the quasi-halo 

region. In Figures 6b, 7b, and 8b, quasi-halo orbits with map crossings that lie close to each of the ARTEMIS 

libration orbit crossings appear with the CR3B converged ARTEMIS trajectories plotted in red to demonstrate 

the long-term evolution of these libration orbits. The quasi-halo orbit crossings are highlighted in color on the 

maps and lie close to the ARTEMIS spacecraft crossings.  

  
  

a) Map corresponding to P2 L1 orbit  

 

b) P1 L1 orbit (red) with a southern quasi-halo 

of similar size (green 

Figure 7. Poincaré Map associated with the P1 L1 ARTEMIS Orbit (C = 3.105) 
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a) Map corresponding to P2 L1 orbit  

 

a) P2 L1 orbit (red) with a northern quasi-halo 

of similar size (blue) 

Figure 8. Poincaré Map associated with the P2 L1 ARTEMIS Orbit (C = 3.080). 

 
 

ENVIRONMENT MODELING 

  

The Environment 

 

It is important to utilize adequate environmental models in order to progress from a CR3B dynamical 

formulation to an operational environment and to support the stationkeeping strategies provided in this paper. 

As noted previously, in the Earth-Moon system, lunar eccentricity and solar gravity significantly influence 

libration point orbit stability and these effects should be modeled very accurately.  

 

Full Ephemeris Models  

 

For ARTEMIS, and as recommended for all operational missions, one should use a full ephemeris 

model (DE421 file) along with third-body perturbations, including solar radiation pressure acceleration based 

on the spacecraft mass and cross-sectional area (e.g. a simplified spacecraft cannon ball model or one that 

reflects a higher fidelity one), a potential model for the Earth with degree and order eight is recommended. The 

numerical integration of the equation of motion for recent operational plans was based on a variable step 

Runge-Kutta 8/9 or Dormand-Prince 8/9 integrator. The libration point locations were also calculated 

instantaneously at the same integration interval. To compute maneuver requirements in terms of v, different 

strategies involve various numerical methods: traditional Differential Correction (DC) targeting with central or 

forward differencing, or optimization using the VF13AD algorithm from the Harwell library and Sequential 

Quadratic Programming (SQP) Optimization. For the DC, equality constraints (velocity targets) are 

incorporated, while for the optimization scheme, nonlinear equality and inequality constraints are employed. 

Software that can be employed to meet spacecraft constraints and orbit goals for stationkeeping effort includes 

GSFC‟s General Mission Analysis Tool (GMAT) (open source s/w) and AGI‟s STK/Astrogator. Once the 

environment has been properly modeled, the next step is maintaining the orbit. 

 

EARTH-MOON LIBRATION STATIONKEEPING STRATEGIES 

A variety of stationkeeping strategies have previously been investigated for applications in the Sun-

Earth system and near the Earth-Moon libration points. To be useful, a stationkeeping strategy must satisfy 

several conditions: use full ephemeris with high-fidelity models, provide globally optimized solutions, and 

apply to Earth-Moon orbital requirements at L1 or L2 and any transfer between them. Several approaches should 
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not be operationally employed for various reasons, e.g., because a reference orbit is required which is not 

necessarily available nor desired (or not correctly modeled); the strategy is based on the CR3B model which 

may not meet true perturbation effects; the stationkeeping process is based on linear control, which may be 

acceptable if the orbit is pre-designed using high fidelity models, but may require frequent maneuvers; or 

because a proposed approach cannot accommodate spacecraft constraints.
 
 Numerous references in the literature 

offer discussion of stability and control for vehicles at both collinear and triangular libration point locations. 

Hoffman
18

 and Farquhar
19

 both provide analysis and discussion of stability and control in the Earth-Moon 

collinear L1 and L2 locations, respectively, within the context of classical control theory or linear 

approximations; Scheeres offers a statistical analysis approach.
20  

Howell and Keeter
21

 address the use of 

selected maneuvers to eliminate the unstable modes associated with a reference orbit; Gomez et al.
22

 developed 

and applied the approach specifically to translunar libration point orbits. Marchand and Howell
23

 discuss 

stability including the eigenstructures near the Sun-Earth locations. Folta and Vaughn
24

 present an analysis of 

stationkeeping options and transfers between the Earth-Moon locations, and the use of numerical models that 

include discrete linear quadratic regulators and differential correctors. Pavlak and Howell
25 

have demonstrated 

maintenance using dynamical systems modes. Lastly, Folta et al.
1-5 

provided both a review of all pertinent 

stationkeeping methods for stationkeeping in Earth-Moon libration orbits with intent of application to 

ARTEMIS, and the operational results of the first EM L1 an EM L2 mission, its transfer to these orbits, the 

intra-transfer from EM L2 to EM L1, and the final transfer to lunar orbits. 

OPTIMAL CONTINUATION STRATEGY (OCS)  

From
 
research by the authors and the imposed operational constraints, the Optimal Continuation 

Strategy (OCS) was chosen and was verified by Mode Analysis using operational navigation data.
1
 As 

summarized in Table 2, this strategy balances the orbit by meeting goals at crossing events several revolutions 

downstream, thereby ensuring a continuous orbit without constraining the near-term evolution or the reliance on 

specific orbit size or orientation specifications. This also provided for the inclusion of several lunar orbits. 

This method uses goals in the form of energy achieved, velocities, or time at any location along the 

orbit. For example, a goal might be defined in terms of the x-axis velocity component at the x-z plane crossing. 

While a DC scheme with v components was used to initialize the analysis in our pre-flight research, for 

operations we switched to an SQP optimizer that uses v magnitude, v azimuth (a spacecraft constraint), and 

maneuver epoch as controls.  The orbit is continued over several revolutions by checking the conditions at each 

successive goal. This allows perturbations and the lunar orbit eccentricity to be modeled over multiple 

revolutions. Targeting is implemented with parameters assigned at the x-z plane crossing such that the orbit is 

continued and another revolution is achieved. The VF13AD and SQP optimizers were used to minimize the 

stationkeeping v by optimizing the direction of the v and the location (or time) of the maneuver. Included in 

the optimization process are the constraints required to maintain the ARTEMIS maneuvers in the spin plane. An 

alternative stationkeeping strategy utilizing a global search method was briefly investigated in an effort to 

determine the smallest v maneuver that maintains the spacecraft in the vicinity of the libration point for one to 

two additional revolutions, but was not applied to ARTEMIS because of limited spacecraft constraint modeling. 

Results of Pre-flight Stationkeeping Research  

Using OCS, we began with pre-flight ARTEMIS initial conditions, and a profile was generated for 

three maneuver locations for the aforementioned number of revolutions. Each profile varied the maneuver 

location and then the number of revolutions to achieve a continuation of the trajectory further downstream. 

Each simulation used statistically generated navigation errors and a constant maneuver execution error of +1%.  

In our pre-flight analysis, a spherical navigation error of 1-km position and 1-cm/s velocity (1, was generated 

by the use of an error covariance matrix. The operational uncertainty from the Goddard Trajectory 

Determination System (GTDS) least squares solution was found to be below 100 meters and 0.1 cm/s. During 

operational support, it was difficult to separate the portion of the error due to the navigation state uncertainty 

before maneuver execution from the maneuver execution errors because each effect was at the limit of 

observability.  
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Table 2.  Control Strategy and Selection Criteria 

 

Strategy Goal(s) Advantage Disadvantage 

Orbit 

Continuation 

Velocity (or energy) is 

determined  to deliver  s/c 

several revs downstream 

(e.g.,  x-axis velocities all 

slightly negative)  

- Guarantees a minimal v 

to achieve orbit continuation  

- Several control constraints 

can be applied 

- 3-D application 

- Needs accurate integration and 

full ephemeris modeling 

- Logic required in program 

scripts to check for departure 

trajectories  

- Optimization requires 

monitoring of process 

Mode 

Analysis 

Determine the cartesian 

direction of a maneuver to 

maintain the orbit 

- Yields mathematically 

desired directions 

- Depended upon navigation 

solutions and/or predictions 

data that is used in Floquet 

analysis and building of STMs 

- May not meet s/c constraints 

in applied V direction. 

 

Table 3 summarizes the average pre-mission v results for cases that applied a 1.5-revolution 

continuation. These results include 10 trials, with each trial defined as a 4-month stationkeeping simulation run 

with different realizations of the errors each time. Several obvious results emerge. First, maneuvers that are 

applied only once per revolution are approximately an order of magnitude larger than those applied at least 

twice per revolution. The maneuvers applied at the maximum y-axis amplitude are also larger than those at the 

x-axis crossings, a result that is consistent with preliminary results from general stationkeeping analysis. To 

compare the results to a strategy that employs more frequent maneuvers, a scenario was simulated that applied 

maneuvers once every 3.8 days (i.e., a four-maneuvers-per-revolution sequence). A scenario using maneuvers at 

the x-z plane crossing was selected based on the operational planning considerations that ARTEMIS tracking 

coverage and navigation solutions would be based on a three-day arc.  Interestingly, it was found that 

maneuvers near maximum y-amplitude also change the z-amplitude due to a jump onto a nearby quasi-halo orbit 

as the attitude of the spacecraft results in a z-axis v component. The pre-flight research show that maneuvers at 

a frequency of at least once every seven days are desired to both minimize the v budget and to align with the 

navigation solution deliveries. A more frequent maneuver plan (3.8-day updates) is only slightly better in terms 

of v. Note that these maneuver are restricted to the spin plane of the ARTEMIS spacecraft which has a spin 

axis aligned with the south Ecliptic pole. The maneuvers are approximately in the Ecliptic plane. 

 

Table 3. Pre-Mission Continuous Method using 1.5-rev (10 Trials)* 

Maneuver Location No. of 

Maneuvers 
Average v 

per Maneuver 

(m/s) 

Std Dev 

(m/s) 
Average v 

per Year 

(m/s) 

  Time Between  

Maneuver (days) 

x-z plane crossing 15 0.28  0.78 12.27  7.3 

x-z plane crossing, 

once per orbit 

7 4.88  7.07  106.51 15.2 

Max y-Amp Every 

crossing 

 15 0.42 .95 18.13   7.3 

Max y-Amp Once per 

orbit 

7 5.46 6.98 110.91 14.9 

4 Pts/Rev   

( ~3.8 days) 

33 0.15 0.33 13.72 3.8  
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OPERATIONAL STATIONKEEPING OF EARTH-MOON ORBITERS 
 

ARTEMIS Stationkeeping  

 

The targets used for the OCS method differed slightly between the EM L2 orbit and the EM L1 orbit. 

The continuation targets for the P1spacecraft maintenance, while in orbit about EM L2, used two different x-axis 

velocity targets, depending on which side of the orbit P1 was on. For example, targets on the far side (away 

from the Moon) used an x-axis crossing velocity of -20 m/s with a tolerance of 1 cm/s. Targets on the close side 

(nearer to the Moon) used x-axis crossing velocity targets of +10 m/s with a tolerance of 1 cm/s. Once in orbit 

about the EM L1 orbit the P1 targets were changed to meet the ongoing operations similar to P2. These targets 

are +/- 10 cm/s at each crossing, a much smaller velocity target. The scheme here is to continuously target the 

next crossing downstream, up to four crossings were used as the change in the v after the third crossing was 

usually below 0.01 cm/s and therefore unachievable by the spacecraft propulsion system.  As each crossing 

condition was achieved in the continuation process using multiple crossing targets, the v decreased to attain 

the next crossing. Also depending on the location of the maneuver with respect to the Moon radius, the v 

magnitude also varied from maneuver to maneuver.  

 

Observed Stationkeeping Maneuver Results 

 

Tables 4 and 5 present all the stationkeeping maneuvers for P1 and P2. The tables provide the 

stationkeeping number, the day of year (DOY) of the maneuver, the v magnitude, the cumulated v, the days 

in the libration orbit and the annual cost based on the v and the duration. Note that maneuver 15 for P1 was an 

insertion v during the libration transfer and is not including in the stationkeeping v summary. 

 

Figures 9 through 14 summarize the chronological v as each stationkeeping maneuver was executed 

for both P1 and P2. Figures 9, 10, and 11 show the P1 v for each maneuver; the annual maintenance cost for 

P1 in L2 and the annual cost for P1 in the L1 orbit. Likewise, Figures 12, 13, and 14 plot the P2 v‟s for each 

maneuver; the annual maintenance cost for P2 in L1 and the annual cost for P2 in the L1 orbit when optimal 

planning conditions are used.  For both spacecraft, the general decrease in the stationkeeping vs is attributed to 

a change in the way the spacecraft was configured to model the thrust arc over which the propulsion system was 

operating improvement in the modeling of the environment, and the Cr use from navigation solutions.  

Originally the thrust arc was fixed at 60 degrees. Advanced onboard software permitted this arc to be controlled 

(varied) more precisely and therefore the maneuver execution was more accurate. Also, the navigation solutions 

provided not only the state, but also a Cr value that considered the perturbation from solar radiation pressure. 

While P1 used the Cr provided by the navigation solution, the P2 maneuvers were originally planned with a 

constant Cr taken from pre-libration orbit analysis to determine this value. Also the peaks are attributed to the 

predictions of the spin axis attitude which is accurate to only approximately 1 degree. Depending on all these 

values, the accuracy of the maneuver varies, and therefore, the subsequent maneuver to correct any errors in 

addition to the general continuation of the orbit could be increased.  

 

Stationkeeping cost since insertion into libration orbits (w/o axial corrections to extend mission three months) 

gives: 

 

 Total P1 ~ 3.99 m/s 

 Total P2 ~ 3.24 m/s 

 P1 projected yearly stationkeeping cost ~7.39 m/s per year for L2 and 5.28 m/s per year for L1 

 P2 projected yearly stationkeeping cost ~5.09 m/s per year 

 These vs per year are based on ARTEMIS maneuvers schedules and constraints 
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Table 4. ARTEMIS P1 Stationkeeping Information 

 

    4a. P1 Individual Maneuvers                                        4b.  P2 Individual Maneuvers  

 

 

 

 

 

 

 

 

Table 5. P1 and P2 Stationkeeping Statistics 

 

 P1 @ L2 (cm/s) P1 @ L1 (cm/s) P2 @ L1 (cm/s) 

Total ∆v 244.0 155.0 324.0 

Min ∆v 6.96 1.17 1.33 

Max ∆v 22.64 27.90 37.89 

Mean ∆v 13.51 7.21 10.85 

STD 5.44 7.60 10.31 

 

 

 

 

SKM Year DOY Day dv (cm/s) cum (m/s) Liss days annual cost (m/s/yr)

1 2010 293 Wed 11.69 0

2 2010 300 Wed 18.38 0.18 7 9.58

3 2010 307 Wed 37.89 0.56 14 14.67

4 2010 315 Thu 24.69 0.81 22 13.43

5 2010 322 Thu 6.23 0.87 29 10.97

6 2010 333 Mon 34.85 1.22 40 11.14

7 2010 340 Mon 10.39 1.32 47 10.28

8 2010 348 Tue 6.64 1.39 55 9.23

9 2010 355 Tue 3.69 1.43 62 8.40

10 2010 362 Tue 12.13 1.55 69 8.19

11 2011 4 Tue 2.04 1.57 76 7.54

12 2011 11 Tue 11.55 1.68 83 7.41

13 2011 18 Tue 2.61 1.71 90 6.94

14 2011 25 Tue 17.85 1.89 97 7.11

15 2011 32 Tue 3.75 1.93 104 6.76

16 2011 40 Wed 29.61 2.22 112 7.24

17 2011 50 Sat 17.40 2.40 122 7.17

18 2011 56 Fri 3.63 2.43 128 6.94

19 2011 65 Sun 21.68 2.65 137 7.06

20 2011 72 Sun 20.80 2.86 144 7.24

21 2011 79 Sun 4.38 2.90 151 7.01

22 2011 86 Sun 1.99 2.92 158 6.75

23 2011 100 Sun 4.96 2.97 172 6.31

24 2011 107 Sun 4.53 3.02 179 6.15

25 2011 116 Tue 1.33 3.03 188 5.88

26 2011 123 Tue 6.85 3.10 195 5.80

27 2011 130 Tue 2.35 3.12 202 5.64

28 2011 137 Tue 1.91 3.14 209 5.49

29 2011 144 Tue 1.45 3.16 216 5.33

30 2011 152 Wed 2.43 3.18 224 5.18

31 2011 161 Mon 6.78 3.25 233 5.09

SKM Year DOY Day dv (cm/s) cum (m/s) Liss days annual cost (m/s/yr)

1 2010 237 Wed 256.24 0

2 2010 251 Wed 58.40 0.58 14 15.23

3 2010 265 Wed 22.28 0.81 28 10.52

4 2010 273 Thu 34.05 1.15 36 11.63

5 2010 282 Sat 7.96 1.23 45 9.95

6 2010 291 Mon 15.84 1.39 54 9.36

7 2010 298 Mon 11.29 1.50 61 8.96

8 2010 306 Tue 11.64 1.61 69 8.54

9 2010 313 Tue 6.96 1.68 76 8.09

10 2010 321 Wed 7.13 1.76 84 7.63

11 2010 334 Tue 20.74 1.96 97 7.39

12 2010 344 Fri 22.64 2.19 107 7.47

13 2010 352 Sat 13.79 2.33 115 7.39

14 2010 361 Mon 11.57 2.44 124 7.19

15 2011 6 Mon 3.32 2.48 134

16 2011 17 Mon 11.80 2.59 145 6.53

17 2011 24 Mon 6.38 2.66 152 6.38

18 2011 32 Tue 19.10 2.85 160 6.50

19 2011 38 Mon 22.29 3.07 166 6.75

20 2011 45 Mon 10.30 3.17 173 6.70

21 2011 49 Fri 1.17 3.19 177 6.57

22 2011 56 Fri 5.93 3.25 184 6.44

23 2011 63 Fri 1.76 3.26 191 6.24

24 2011 69 Thu 2.93 3.29 197 6.10

25 2011 76 Thu 1.74 3.31 204 5.92

26 2011 83 Thu 2.32 3.33 211 5.77

27 2011 89 Wed 2.04 3.35 217 5.64

28 2011 96 Wed 1.99 3.37 224 5.50

29 2011 103 Wed 2.17 3.40 231 5.36

30 2011 110 Wed 27.90 3.67 238 5.63

31 2011 117 Wed 2.78 3.70 245 5.52

32 2011 124 Wed 12.99 3.83 252 5.55

33 2011 131 Wed 5.03 3.88 259 5.47

34 2011 144 Tue 5.53 3.94 272 5.28

35 2011 150 Mon 1.17 3.95 278 5.19

36 2011 157 Tue 4.03 3.99 285 5.11
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Figure 9.  P1 Individual Stationkeeping v vs. 

Stationkeeping Maneuver 

Figure 10.  P1 EM L2 Libration Point Orbit 

Cumulative Annual v   

  
Figure 11.  P1 EM L1 Libration Point Orbit 

Cumulative Annual v 
 

Figure 12.  P2 Individual Stationkeeping v vs. 

Stationkeeping Maneuver 
 

  
Figure 13.  P2 EM L1 Libration Point Orbit 

Cumulative Annual v ( Pre Cr change) 

 

Figure 14.  P2 EM L1 Libration Point Orbit 

Cumulative Annual v ( Post Cr change) 

 

OPERATIONAL LIBRATION FLOQUET MODE RESULTS  

 

Research involving multi-body environments has been ongoing for over a decade.
20-22,27

 Working in 

collaboration with Purdue University, GSFC analyzed many trajectories in both Sun-Earth and Earth-Moon 

regimes. This analysis has demonstrated that there could be alternate methods for stationkeeping that result in 

the balancing or continuation of the libration orbit over several revolutions. In general terms, this research is 

denoted here as Mode Analysis and analyzes the eigenstructure (eigenvectors and eigenvalues) of the libration 

orbit to compute information regarding the orbit stability. By proper modeling of the orbit using various 

methods such as CR3B and geometric means, many studies have been completed that indicate that maneuvers 

along the stable or unstable mode direction, as represented in a Cartesian system, could be used for 
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stationkeeping. ARTEMIS permits us to validate that research and show how the OCS used for ARTEMIS 

placed maneuvers along the stable mode direction. 

 

Using operational ARTEMIS orbit determination solutions along with the stationkeeping maneuvers 

executed using the OCS strategy, we computed an approximate monodromy matrix by generating and 

propagating the State Transition Matrix (STM), Φ, from an initial state. To calculate the STM, we propagate an 

initial state that is perturbed in each of its components (4×10
-4

 km and 1×10
-4

 cm/s for each position and 

velocity). Then, in Matlab, a finite-difference STM using initial and final state information from numerical 

integration yields an approximation of the monodromy matrix.   
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   (3) 

 

From this information, we then compute the 6 eigenvalues, λi, of the STM which yields, 

 

– | λi | < 1 → stable eigenvalue(s) 

– | λi | > 1 → unstable eigenvalue(s) 

  

Once the mode information is generated we compare actual maneuver direction with stable/unstable eigenvector 

information. Additional methods are being studied for computing eigenvalues/eigenvectors in less periodic 

portions of the orbits (i.e., the P1 L2 quasi-halo trajectory). 

  

Below are three figures (Figures 15, 16, and 17) that reflect the stable and unstable mode directions for 

ARTEMIS orbits consistent with P1 over one revolution of an EM L2 orbit, P1 in an EM L1 revolution and P2 

as it evolves over a revolution about the EM L1 point. Additionally, several plots present information for a 

select few stationkeeping maneuvers.  Note that all the ARTEMIS maneuvers are co-aligned along the stable 

mode direction. Analysis was also performed to determine if a v along the unstable direction would maintain 

the orbit. This proved valid, but the OCS optimization scheme and the stable mode direction results in minimal 

v magnitudes which were smaller that the unstable component by ~5-10%.  Initially, it may be surprising that 

all the vs are aligned with the stable mode rather than the unstable mode to cancel that unstable component of 

the error. At this point, we believe that the OCS process employs the selected targets to „bend‟ the trajectory  

  
Figure 15.  P1 EM L2 (right) and EM L1 (left) Stable and Unstable Directions 
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along a continuation orbit that, in fact, results in a maneuver that promotes the stability of the orbit; in contrast 

to an action that reduces the unstable component. We also believe that the use of multiple orbits in our 

optimization algorithm aids in delivering maneuvers in the stable direction. While a full understanding of this is 

still being examined, a basic conclusion is that maneuver placement along the stable mode can be used to 

maintain the orbit. 

 

In Figures 18 and 19, the stationkeeping v directions and the stable / unstable mode directions at 

these maneuver epochs (location) are plotted. Figures 20 and 21 present the angle between the EM rotating 

coordinate system Cartesian v vector and the stable mode directions for all stationkeeping maneuvers. As 

apparent in these figures, the v vector aligns closely with the stable mode for all maneuvers even with 

spacecraft constraints in place.  

 

 

Figure 18. P1 Stationkeeping #21 (left) and Stationkeeping #10 (right) Locations, Stable (blue)  

and Unstable (red) Directions and the v (black) Direction 

 

 

 

 

 

 
Figure 16. Sample P1 EM L2 (side view)    Figure 17.  P2 EM L1 Stable and Unstable 

Directions 

 

v and Stable 

Mode 

Unstable Mode 

v and Stable 

Mode 

Unstable Mode 
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Figure 19. P2 SKM 04 (left) and SKM 21 (right) 

Locations, Stable (blue) and Unstable (red) Directions and the v (black) Direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. P1 Total (top, blue) and In-Plane (bottom, red) Angle between v Vector  

and the Associated Stable Mode Direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. P2 Total (top, blue) and In-Plane (bottom, red) Angle between v Vector and the Associated 

Stable Mode Direction 

Observations and Recommendations 

v and Stable 

Mode 

v and Stable 

Mode 

Unstable Mode 
Unstable Mode 

v and Stable 

Mode 
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Research and demonstrated operations have provided some unique observations for the selection of 

Earth-Moon libration orbits and their stationkeeping.  It has been demonstrated that low stationkeeping vs can 

be found to meet mission requirements. 

• Modeling and Poincare Maps 

o A CR3B model can be used to estimate non-linear Earth-Moon libration orbits to a reasonable 

level of fidelity, especially when combined with navigation solutions. 

o Earth-Moon Poincaré Maps provide accurate details of the dynamics. They also provide a guide 

for orbit characteristics selection and initial maneuver locations. 

o To first order, the dynamics of the Earth-Moon environment also must be modeled over a 

sufficient duration of 21 days to realistically account for all accelerations. 

o A full ephemeris model and the modeling of associated errors from navigation and maneuvers are 

required to accurately determine the accelerations that affect the stationkeeping v. 

• Stationkeeping and Control 

o Optimized maneuver directions were aligned with the dynamically stable mode direction for all 

stationkeeping maneuvers. 

o Stationkeeping cost with realistically modeled navigation errors does have a floor – a rule of 

thumb from the ARTEMIS mission was a ~20:1 ratio of SKM v to navigation + execution 

errors for a ½ revolution. 

o Targeting goals used for EM L2 stationkeeping differed from EM L1 stationkeeping goals. 

o Maneuvers performed at the y-extrema resulted in an increased „unstableness‟ of the orbit 

resulting in increased v magnitudes for follow-on maneuvers. 

o The OCS stationkeeping strategy can meet rigorous mission requirements and provides a robust 

method that can be verified with Mode Analysis. 

 

An operational note, two other items of interest also were observed during the ARTEMIS mission support; 

sensitivity of the post-maneuver orbit with respect to maneuvers located at the x-z plane crossing or y-extreme 

and the effect of the lunar eccentricity to reduce the libration orbit negative y-amplitude every two weeks. Due 

to station contact schedule, some stationkeeping maneuvers were placed near the y-component extreme. We 

found that the resultant follow-up stationkeeping maneuver was larger, almost a factor of 5 times larger than 

expected. Subsequent analysis found that the v directions were co-aligned with the spacecraft velocity vector 

direction at these locations, unlike at the x-axis crossing where the v vector was almost perpendicular. Our 

analysis indicates that this alignment results in more uncertainty in the final velocity after the v was applied.  

We then switched back to x-z plane crossing locations when the station contact permitted. Consideration of 

errors in the onboard computation of the center of the spin pulse (v direction) contributed to this sensitivity as 

well.  

SUMMARY 

An Earth-Moon orbit selection process using Poincaré maps and a stationkeeping strategy has been 

demonstrated that results in low stationkeeping v requirements which met the ARTEMIS mission 

requirements and spacecraft constraints. It has been demonstrated that a full ephemeris model along with 

accelerations from third-body perturbations and the Earth‟s potential must be modeled for accurate prediction 

and maneuver planning.  Associated errors from navigation and maneuvers must be kept to levels below tenths 

of cm/s to accurately model the accelerations that affect the v. The dynamics of the Earth-Moon environment 

also must be modeled over a sufficient duration, at least 3 weeks. This duration should be equal to or greater 

than 21 days to account for the lunar eccentricity and to a lesser, but still important degree, the perturbation 

from the Sun. An increase in the frequency of the maneuvers tends to reduce the overall v requirements as 

does the placement of the maneuvers near the x-z plane crossing. Operational ARTEMIS stationkeeping costs 

had a floor of about 5 m/s per year, considerably less than previous studies. 
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CONCLUSIONS 

While there are a number of strategies available that incorporate the Earth-Moon dynamics, the actual 

mission applications and mission constraints must also be considered. The methods here provide a general 

stationkeeping algorithm that is capable of meeting spacecraft constraints on v direction or additional orbit 

parameters and does not require a reference trajectory.  The required stationkeeping v can be minimized and 

has been demonstrated to be very minimal at ~5 m/s per year. With the ARTEMIS P1 and P2 Earth-Moon 

libration point orbit completed, investigation of additional robust strategies and options to improve the v 

computation for stationkeeping is continuing. 
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